
COMP3161/COMP9164 Supplementary Lecture Notes

Lambda Calculus

Thomas Sewell

October 3, 2024

This is a short note on the λ calculus. The λ calculus was created by Alonzo Church in the
early part of the twentieth century. It was one of a number of attempts to develop an algebra in
which to encode the other fields of mathematics. The goal was to build a system that was simple
and unambiguous, and thus able to provide unambiguous meanings to everything that could be
encoded in it. The λ calculus did not deliver on this grand ambition, and is now rarely used in
mathematics, but it is considered an essential idea in the theory of computer science.

1 Syntax

The λ calculus syntax consists of symbols, applications, and lambda abstractions:

t ::=
x (symbols)

| t1 t2 (applications)
| λ x. t (λ-abstractions)

2 Semantics

The semantics of the λ calculus is captured by an equivalence relation, which specifies which λ
terms are equivalent. The equivalence relation is composed from three kinds of equivalence, named
α, β and η. We assume that Alonzo Church had a preference for the Greek alphabet.

Informally, the three relations allow us to make three kinds of “moves”, α renaming, β con-
traction and η contraction, which look like:

(λ x. x) ≡α (λ y. y)

(λ x. fx) ≡η f

(λ x. e) y 7→β e[x := y]

The α and η rules capture ways in which λ calculus terms are ”obviously” the same. We can
change names that are local to a λ abstraction via an alpha renaming, and we can discard an
unnecessary λ abstraction around a function via an η reduction (also called an η contraction).

The concept of α equivalence also applies to any other language with locally bound variable
names. The note on “Syntax” already introduced an α equivalence notion for let expressions. The
λ calculus is very influential, and it is common for other languages to borrow its names and its
concepts, especially λ abstraction and α equivalence.

The key α, β and η steps can also be applied anywhere within a λ calculus term. For instance,
the α equivalence relation can be presented in a natural deduction style:

1



x ≡α x

f1 ≡α f2 x1 ≡α x2

f1 x1 ≡α f2 x2

e1 ≡α e2

(λ x. e) ≡α (λ x. e2)

(λ x. e) ≡α (λ y. e[x := y])

The rules here clarify that α equivalence is reflexive, and that it is contextual across applications
and λ abstractions, and finally that a local α equivalence can be shown by substitution. The
problem of performing a substitution of x without capturing a different x inside an inner (λ x. e)
is exactly the same as the one discussed in the “Syntax” note.

The η equivalence notion is the simplest. Like α equivalence, permits an η contraction to be
applied anywhere in the term. Unlike the other two moves, it does not require any discussion of
substitution or variable capture.

2.1 β Reduction

The most complex of the equivalence notions is built from β reduction. The β reduction process
allows us to “evaluate” terms in the λ calculus by performing substitution.

(λ x. e) y 7→β e[x := y]

Like the other two operations, a β-reduction can be applied anywhere in the syntax we find a
λ abstraction applied to an argument. Such a site is called a reducible (sub-)expression, or redex.
This is characterised formally in natural-deduction style by these rules:

(λx. t) u 7→β t[x := u]

t 7→β t′

s t 7→β s t′
s 7→β s′

s t 7→β s′ t

t 7→β t′

λx. t 7→β λx. t′

The β-reduction process is essentially a small-step relation. Small step relations are (or will
be) discussed in detail in the “Semantics” note. A term is in normal form once it has no more
reducible expressions. The β-reduction process may terminate, after a chain of reductions, in a
term in normal form. Two terms t1 and t2 are defined to be β-equivalent if they can both be
reduced to the same normal form, that is:

t1 7→∗
β n t2 7→∗

β n redexes(n) = ∅
t1 ≡β t2

Note that a term t may have multiple redexes (reducible subexpressions). There is no enforced
evaluation order. Instead, any reduction may be performed, and thus the β-reduction process of
a term may split into different paths. It can be proven that β-reduction for a term is confluent
if any normal form exists. If it is possible to reach a normal form from t, then every β-reduction
process from t eventually reaches the same normal form and terminates there. Since normal forms
are unique, the β-equivalence relation is well-behaved.

2



The three kinds of moves can all be put together. Terms are αβη-equivalent if they have
normal forms that are αη-equivalent, that is:

s ≡αβη t ≡ ∃ns nt. s 7→∗
β ns ∧ t 7→∗

β nt ∧ ns ≡αη nt

However, not all terms have a normal form. Consider this problematic expression:

(λx. x x)(λx. x x)

A β-reduction step returns to the same term (or an α-equivalent one, depending on how
capture-avoiding substitution is done). The β-reduction process goes on forever with no progress.
There is an infinite variety of terms that do not terminate, and the αβη-equivalence notion is not
useful for them.

3 Church’s Encodings

A future version of this document might say more about how Church encoded standard types and
operations from mathematics into the λ calculus, including the encodings of Boolean terms and
operations, and the encoding of natural numbers and their arithmetic.

3


